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ABSTRACT 

This paper describes the initial results of applying two 
machine-learning-based unsupervised anomaly 
detection algorithms, Orca and GritBot, to data from two 
rocket propulsion testbeds. The first testbed uses 
historical data from the Space Shuttle Main Engine. The 
second testbed uses data from an experimental rocket 
engine test stand located at NASA Stennis Space 
Center. The paper describes four candidate anomalies 
detected by the two algorithms. 

INTRODUCTION 

The ability to detect anomalies in sensor data from a 
complex engineered system such as a spacecraft is 
important for at least three reasons. First, detecting 
anomalies in near-real-time during flight can be helpful in 
making crucial decisions such as the decision of whether 
to abort the launch of a spacecraft prior to reaching the 
intended altitude. Second, for a reusable spacecraft 
such as the Space Shuttle, detecting anomalies in 
recorded sensor data after a flight can help to determine 
what maintenance is or is not needed before the next 
flight. Third, the detection of recurring anomalies in 
historical data covering a series of flights can produce 
engineering knowledge that can lead to design 
improvements. 

The current approach to detecting anomalies in 
spacecraft sensor data is to use large numbers of 
human experts. Flight controllers watch the data in near-
real time during each flight. Engineers study the data 
after each flight. These experts are aided by limit checks 
that signal when a particular variable goes outside of a 
predetermined range. The current approach is very labor 
intensive. Also, humans may not be able to recognize 
faults that involve the relationships among large 
numbers of variables. Further, some potential faults 
could happen too quickly for humans to detect them and 
react before they become catastrophic. On future 
missions to Mars, there will be a speed-of-light delay of 
up to 20 minutes in between when the data is sensed 
and when flight controllers on Earth first see it, furthering 
the need for automated approaches to anomaly 
detection. 

One approach to automating anomaly detection is the 
model-based approach. This approach encodes human 
knowledge into a model, which is then used to 
automatically detect faults. Examples of systems that 
use the model-based approach include Livingstone [1, 2, 
3], Titan [4], TEAMS-RT [5], RODON [6], SHINE [7], and 
MEXEC [8]. Building the models is very labor intensive; it 
therefore may not be feasible to model every part of a 
highly complex system such as a spacecraft. It also may 
not be possible to model all possible failure modes. We 
therefore consider supplementing the model-based 
approach with the data-driven approach. 

The data-driven approach seeks to build a model for 
detecting anomalies directly from the data, rather than 
building it based on human expertise. In this paper, we 
explore a particular data-driven approach, which is 
based on anomaly detection algorithms from the 
machine learning community. 

ANOMALY DETECTION 

Anomaly detection algorithms, also known as outlier 
detection algorithms, seek to find portions of a data set 
that are somehow different from the rest of the data set. 
A supervised anomaly detection algorithm requires 
training data consisting of a set of examples of 
anomalies, and a set of examples of non-anomalous (or 
nominal) data. From the data, the algorithm learns a 
model that distinguishes between the nominal and the 
anomalous data points. Supervised anomaly detection 
algorithms typically require tens or hundreds of labeled 
examples of anomalies, plus a similar number of labeled 
examples of nominal data points, in order to obtain 
adequate performance. Unsupervised anomaly detection 
algorithms are trained using only nominal data. They 
learn a model of the nominal data, and signal an 
anomaly when new data fails to match the model. They 
typically require tens or hundreds of nominal data points 
in order to obtain adequate performance. 

For both of the testbeds that we used, the number of 
examples of anomalies available to us was fairly small. 
We therefore decided to use unsupervised anomaly 
detection algorithms, since they do not require labeled 
examples of anomalies. The next two subsections 
describe the two unsupervised anomaly detection 
algorithms that we used: Orca and GritBot. 



ORCA 

Orca, which was developed by Bay and Schwabacher, 
uses a nearest-neighbor approach to anomaly detection. 
It defines an anomaly to be a point whose nearest 
neighbors in feature space are far away from it. It uses a 
novel pruning rule to obtain near-linear-time 
performance, allowing it to scale to very large datasets 
[9]. 

GRITBOT 

GritBot is a commercial product from RuleQuest 
Research [10]. Rather than just looking for points that 
are anomalous with respect to the entire dataset, GritBot 
searches for subsets of the dataset in which an anomaly 
is apparent. For each anomalous point, it reports a 
description of the relevant subset of the dataset, based 
on values of discrete variables or ranges of continuous 
variables, in which the target variable usually has a 
particular value (if it is discrete) or range of values (if it is 
continuous). The point is considered to be an anomaly 
because the target variable at that point is significantly 
different from the value of the target variable at the vast 
majority of the other points in the subset. 

TESTBEDS 

We used two testbeds to test the anomaly detection 
algorithms: The Space Shuttle Main Engine and a rocket 
engine test stand at NASA Stennis Space Center. 

SPACE SHUTTLE MAIN ENGINE 

The Space Shuttle propulsion system consists of two 
solid rocket boosters, and three Space Shuttle Main 
Engines (SSMEs) [11]. The SSMEs are located on the 
Orbiter. During the initial ascent, all five engines are fired 
together. Approximately two minutes after launch, the 
solid rocket boosters run out of fuel and are jettisoned, 
and the Shuttle continues its ascent using only the three 
SSMEs. The SSMEs are liquid-fueled rocket engines 
employing cryogenic liquid hydrogen and liquid oxygen 
as propellants. These propellants are stored in the 
external tank, which is jettisoned when the Shuttle 
reaches its intended orbit, about nine minutes after 
launch. 

The SSMEs are reusable. After each flight, they are 
removed from the Orbiter, inspected, serviced as 
necessary, and then installed onto an Orbiter (which is 
not necessarily the same orbiter). Each engine is 
periodically acceptance tested by firing it on the ground 
using test stands located at NASA Stennis Space 
Center. 

Each SSME has approximately 90 sensors measuring 
quantities such as temperature, pressure, fuel flow rate, 
rotational velocity, and vibration. Many of the sensors 
are redundant for reliability reasons. For example, four 
identical pressure sensors may be placed right next to 
each other with the expectation that they will all provide 

approximately the same value. When one of the sensors 
provides a substantially different value from the other 
three, it can be inferred that the sensor has failed. When 
the SSMEs are used on the Shuttle, additional relevant 
information is available from sensors located in the 
Shuttle’s fuel feed system. When the SSMEs are fired 
on a test stand, the test stand acts as a fuel feed 
system, and provides additional relevant information 
from sensors located on the test stand. A small number 
of additional sensors are placed directly on the SSME 
during testing. The initial results reported in this paper 
use only the data from the sensors that are located on 
the SSME and available both in flight and on the test 
stand. 

ROCKET ENGINE TEST STANDS 

NASA Stennis Space Center (SSC) in Mississippi 
operates several rocket engine test stands. Each test 
stand provides a structure strong enough to hold a 
rocket engine in place as it is fired, and a fuel feed 
system to provide fuel to the engine. Test stands A-1 
and A-2 are large test stands used to test the SSMEs. 
Test stand E-1 is a much smaller test stand used to test 
experimental rocket engines [12]. Test stand E-1 is 
being used as part of the Integrated Systems Health 
Management (ISHM) Testbeds and Prototypes Project 
as a testbed for a variety of ISHM technologies. It has 
numerous sensors on its fuel feed system, which are 
analogous to the sensors on a spacecraft’s fuel feed 
system. In this paper, we present the initial results of 
applying anomaly detection algorithms to these sensor 
data. 

RESULTS 

So far all of the anomalies that we have detected using 
the two algorithms have been ones that the domain 
experts either already knew about, or considered to be 
insignificant. However, some of the anomalies that have 
been detected demonstrate the potential of the 
algorithms to detect significant anomalies in the future. 
In this section, we review several examples of such 
detected anomalies. 

In each case described in this section, we ran an 
anomaly detection algorithm on data from one rocket 
engine test. For the SSME, each test had 129 
continuous variables, 18 discrete variables, and about 
13,000 time steps. For Test Stand E-1, each test had 73 
continuous variables, 87 discrete variables, and about 
39,000 time steps. GritBot took about 5 minutes to 
analyze the data from an SSME test, and about 7 
minutes to analyze the data from an E-1 test, on a 1.5 
GHz Pentium M laptop. Orca took about 3 minutes to 
analyze the data from an SSME test, and about 12 
minutes to analyze the data from an E-1 test, on a 500 
MHz Sun Blade 100 workstation. Each SSME test lasted 
about 8 minutes, so both algorithms were able to 
process the data faster than real time. Each E-1 test 
lasted about 2.5 minutes, so both algorithms processed 
that data somewhat slower than real time. The data from 



the E-1 tests had a higher sampling rate than the data 
from the SSME tests, which prevented the algorithms 
from being able to process the data in real time. Note 
that the processors we used were slow by today’s 
standards; we believe that both algorithms could 
process the E-1 data in real time using faster 
processors. 

 

Figure 1: SSME fuel flow anomaly 

The first anomaly that we consider is shown in Figure 1. 
(Note that in all of the figures in this paper, we have 
removed the numbers from the Y axis in order to protect 
the confidentiality of the data.) The SSME has redundant 
fuel flow sensors. Figure 1 shows the values of two of 
those sensors during a short period of time (0.6 
seconds). The values of the two sensors are usually 
almost exactly the same. However, at approximately 
427.35 seconds, they differed substantially. GritBot 
considered this difference to be an anomaly. GritBot also 
detected 140 other similar anomalies involving 
differences between redundant fuel flow sensors; the 
one in Figure 1 was the strongest anomaly. The domain 
experts could not explain the difference between the two 
sensor values, but they noted that this type of small 
difference occurs fairly regularly, that the small errors 
occur in both directions, and that the values are 
averaged before being used to make a decision. They 
therefore felt that the sensor anomaly was not a reason 
for concern. 

 

Figure 2: SSME mixture ratio anomaly 

The second anomaly we consider is shown in Figure 2. 
Mixture ratio is the oxidizer to fuel ratio of the SSME’s 
main combustion chamber. By definition, it can not be 
negative. GritBot observed that this variable was almost 
never negative in the training data, and then detected 
several points at which it was negative in the test data, 
all within the first two seconds of a test. The domain 
experts said that negative reported mixture ratio at the 
beginning of a test is a known and well-understood 
artifact of the way in which mixture ratio is calculated. 
The SSME does not have an oxidizer flow meter, so the 
ratio can not be calculated directly. Instead it is 
calculated indirectly. The indirect calculation produces 
reasonably accurate values, except during startup. 

 

Figure 3: SSME controller bus voltage anomaly 

The third anomaly that we consider is shown in Figure 3. 
The voltage on controller bus 2 usually stays within a 
fairly narrow range. Orca detected one point in time, 
approximately 2.5 seconds after the beginning of the 
test, at which the voltage dropped to an unusually low 
level. The domain experts said that the main igniters fire 
at that point in time, which causes the drop in voltage. 



They already knew about the drop in voltage, and did 
not consider it to be an anomaly. 

The fourth anomaly that we consider is from Rocket 
Engine Test Stand E-1. Some of the variables for E-1 
are redline enablers – these are discrete control inputs 
that enable or disable a redline, which is a threshold on 
a sensor reading beyond which an automatic shutdown 
is triggered. There are some pairs of redline enablers 
that tend to be turned on or off at the same time. GritBot 
noticed that one particular pair of redline enablers had 
the same on or off value at every timestep in a test 
except for one timestep: one redline enabler was turned 
on one timestep later than the other one. GritBot 
considered this one point where the two redline enablers 
had opposite Boolean values to be an anomaly. Orca 
found some similar discrepancies between redline 
enablers. Our domain experts felt that these very small 
delays in between enabling one redline and another 
redline were not significant and should not be 
considered anomalies. 

RELATED WORK 

Park, et al. applied the BEAM (Beacon-based Exception 
Analysis for Multi-Missions) system to anomaly detection 
in SSME data [13]. BEAM has nine components that use 
nine different approaches to anomaly detection. The 
work reported in [13] only used one of the nine 
components: the Dynamical Invariant Anomaly Detector 
(DIAD). DIAD is an unsupervised anomaly detection 
algorithm, like GritBot and Orca. DIAD differs from 
GritBot and Orca in that DIAD only considers one 
variable at a time, while GritBot and Orca both consider 
all of the variables together and look for anomalies in the 
relationships among the variables, in addition to 
anomalies in individual variables. Park, et al. trained 
DIAD using data from 16 nominal tests, and tested it 
using data from seven tests that contained known 
failures. It detected all of the major failures in these 
seven tests, although it missed some minor failures and 
had some false alarms. 

Iverson’s Inductive Monitoring System (IMS) [14] is 
another unsupervised learning system for fault detection. 
It uses a clustering algorithm to cluster the nominal 
training data into clusters representing different modes 
of the system. When new data fails to fit into any of the 
clusters, it signals an anomaly, using the distance from 
the nearest cluster as a measure of the strength of the 
anomaly. After the STS-107 Space Shuttle Columbia 
disaster, Iverson applied IMS to some relevant data. He 
trained it using data from five previous Space Shuttle 
flights, and then tested it using STS-107 data. It 
detected an anomaly in data from temperature sensors 
on the Shuttle’s left wing shortly after the foam impact, 
suggesting in retrospect that with the aid of IMS, flight 
controllers might have been able to detect the damage 
to the wing much sooner than they did. 

Many of the existing approaches to data-driven systems 
health monitoring have used artificial neural networks to 

model the system. Artificial neural networks are a type of 
model based loosely on the neural structure of the brain, 
in which the weights of the connections among neurons 
are automatically adjusted to maximize the fit of the 
model to the data [15]. Guo and Musgrave [16] applied 
neural networks to sensor validation for the SSME. He 
and Shi [17] found that support vector machines 
produced better accuracy than artificial neural networks 
when applied to a pump diagnosis problem. One 
disadvantage of neural network approaches is that most 
humans are unable to understand or interpret the neural 
network models. Models based on decision trees, 
decision rules, or nearest neighbors are generally easier 
to understand, and therefore more likely to be accepted 
by human experts. 

CONCLUSION 

This paper presents four candidate anomalies that were 
discovered by applying two unsupervised anomaly 
detection algorithms to two rocket propulsion testbeds. 
Although none of these candidate anomalies were 
judged by our domain experts to be significant, we 
believe that they demonstrate that the algorithms have 
the potential to detect the kind of unusual phenomena in 
the data that could correspond to significant anomalies. 
We have also demonstrated that these algorithms have 
the potential to process real rocket propulsion sensor 
data in nearly real time. 

An important point to make is that although some 
anomalies were detected by both Orca and GritBot, 
other anomalies were only detected by one algorithm or 
the other algorithm. The reason for the difference is that 
the two algorithms use two different definitions of an 
anomaly. Other anomaly detection algorithms besides 
these two algorithms use other definitions of an 
anomaly. Because of these differences, it can be useful 
to run multiple anomaly detection algorithms on a data 
set. 

FUTURE WORK 

This paper presents early results; there are many 
directions for future research. The preliminary results 
presented in this paper consist of four examples of 
candidate anomalies that were detected by two 
unsupervised anomaly detection algorithms. Although 
interesting, none of these candidate anomalies were 
judged by the domain experts to be significant. In the 
future, we would like to test the ability of these 
algorithms to detect known anomalies in the data, by 
applying them to several data sets that are known to 
contain anomalies. Unfortunately, we will probably never 
have enough data to calculate false positive and false 
negative error rates with any statistical significance, but 
testing the algorithms on a larger amount of data than 
we have used so far should shed additional light on the 
algorithms’ performance. 

The results presented in this paper apply the algorithms 
to data from one propulsion test at a time, flagging 



points in time within the test that differ from the rest of 
the test as anomalies. Another approach is to use a set 
of past tests that are thought to be nominal as training 
data, and then test the algorithm on a new test. We have 
done some preliminary trials in which we trained each 
algorithm on one past test and then tested it on one 
newer test. The anomalies detected were essentially the 
same ones that were detected when running the 
algorithm on only one test. Further testing of the 
algorithms across multiple engine tests is needed. 

Because of the small number of examples of anomalies 
available to us, we decided to first try unsupervised 
anomaly detection algorithms. We believe that the small 
number of examples of known anomalies will present a 
challenge for supervised anomaly detection algorithms. 
A direction for future research is to try to find ways to 
make supervised learning algorithms perform 
adequately given such a small number of examples of 
anomalies. One approach would be to use each time 
step from an anomaly that spans multiple time steps as 
an example of an anomaly. 

In the results presented in this paper, the anomaly 
detection algorithms did not make use of any expert 
knowledge. We plan to explore ways of using 
background knowledge within the automated anomaly 
detection context. One possible source of knowledge is 
the determinations made by the domain experts that the 
candidate anomalies described in this paper are not 
significant. One way to make use of this knowledge 
would be to use semi-supervised learning algorithms, 
and providing them with examples that are labeled as 
nominal for each candidate anomaly that the experts 
judged to be nominal. The algorithm would then avoid 
incorrectly signaling an anomaly in the future when 
similar patterns appear in the data. 

The data sets used in this research are all time series. 
The algorithms described in this paper, however, do not 
explicitly make use of time. Instead, time is treated just 
like any other variable. We plan to explore algorithms 
that explicitly model time. One method in particular that 
we plan to explore is windowing. In the windowing 
approach, for each time step the algorithm considers the 
sensor values at that time step and at a fixed number of 
previous time steps in determining whether or not the 
point is an anomaly. 

We also plan to test anomaly detection algorithms using 
other systems health management testbeds besides the 
two rocket-propulsion testbeds described here. In 
particular, we plan to test the algorithms using data from 
the International Space Station and from the Apollo 
missions to the Moon. 
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